Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence

نویسندگان

  • C. Bona
  • Carles Bona-Casas
  • J. Terradas
چکیده

The Osher-Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain compact finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the Orszag-Tang 2D vortex problem. Total-variation-bounded behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley-Leverett test simulations. Ministry of Science and the Balearic Islands Government 2 C. Bona acknowledges the Charles University in Prague for his hospitality during the completion of this work and specially Tomas Ledvinka for useful suggestions and discussions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A Class of High Resolution Shock Capturing Schemes for Non-linear Hyperbolic Conservation Laws

Abstract. A general procedure to construct a class of simple and efficient high resolution Total Variation Diminishing (TVD) schemes for non-linear hyperbolic conservation laws by introducing anti-diffusive terms with the flux limiters is presented. In the present work the numerical flux function for space discretization is constructed as a combination of numerical flux function of any entropy ...

متن کامل

High Resolution Schemes for Hyperbolic Conservation Laws

A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robust...

متن کامل

On the Behavior of the Total Variation in CWENO Methods for Conservation Laws

We consider a family of high-order, weighted essentially non-oscillatory central schemes (CWENO) for approximating solutions of one-dimensional hyperbolic systems of conservation laws. We are interested in the behavior of the total variation (TV) of the approximate solution obtained with these methods. Our numerical results suggest that even though CWENO methods are not total variation diminish...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009